Addressing the Rare Word Problem in Neural Machine Translation Addressing the Rare Word Problem in Neural Machine Translation
Paper summary # Addressing the Rare Word Problem in Neural Machine Translation ## Introduction * NMT(Neural Machine Translation) systems perform poorly with respect to OOV(out-of-vocabulary) words or rare words. * The paper presents a word-alignment based technique for translating such rare words. * [Link to the paper](https://arxiv.org/abs/1410.8206) ## Technique * Annotate the training corpus with information about what do different OOV words (in the target sentence) correspond to in the source sentence. * NMT learns to track the alignment of rare words across source and target sentences and emits such alignments for the test sentences. * As a post-processing step, use a dictionary to map rare words from the source language to target language. ## Annotating the Corpus ### Copy Model * Annotate the OOV words in the source sentence with tokens *unk1*, *unk2*,..., etc such that repeated words get the same token. * In target language, each OOV word, that is aligned to some OOV word in the source language, is assigned the same token as the word in the source language. * The OOV word in the target language, which has no alignment or is aligned with a known word in the source language. is assigned the null token. * Pros * Very straightforward * Cons * Misses out on words which are not labelled as OOV in the source language. ### PosAll - Positional All Model * All OOV words in the source language are assigned a single *unk* token. * All words in the target sentences are assigned positional tokens which denote that the *jth* word in the target sentence is aligned to the *ith* word in the source sentence. * Aligned words that are too far apart, or are unaligned, are assigned a null token. * Pros * Captures complete alignment between source and target sentences. * Cons * It doubles the length of target sentences. ### PosUnk - Positional Unknown Model * All OOV words in the source language are assigned a single *unk* token. * All OOV words in the target sentences are assigned *unk* token with the position which gives the relative position of the word in the target language with respect to its aligned source word. * Pros: * Faster than PosAll model. * Cons * Does not capture alignment for all words. ## Experiments * Dataset * Subset of WMT'14 dataset * Alignment computed using the [Berkeley Aligner](https://code.google.com/archive/p/berkeleyaligner/) * Used architecture from [Sequence to Sequence Learning with Neural Networks paper](https://gist.github.com/shagunsodhani/a2915921d7d0ac5cfd0e379025acfb9f). ## Results * All the 3 approaches (more specifically the PosUnk approach) improve the performance of existing NMTs in the order PosUnk > PosAll > Copy. * Ensemble models benefit more than individual models as the ensemble of NMT models works better at aligning the OOV words. * Performance gains are more when using smaller vocabulary. * Rare word analysis shows that performance gains are more when proposition of OOV words is higher.

Loading...
Your comment:


ShortScience.org allows researchers to publish paper summaries that are voted on and ranked!
About