Exploiting local features from deep networks for image retrieval Exploiting local features from deep networks for image retrieval
Paper summary In this paper, the authors raise a very important point for instance based image retrieval. For a task like an image recognition features extracted from higher layer of deep networks works really well in general, but for task like instance based image retrieval features extracted from higher layers don't prove to be that useful, so the authors suggest that we take features from lower layer and on those features, apply [VLAD encoding](https://www.robots.ox.ac.uk/~vgg/publications/2013/arandjelovic13/arandjelovic13.pdf). On top of the VLAD encoding as part of post processing, we perform steps like intra-normalisation and then apply PCA and reduce the encoding to a size of 128 Dimension. The authors have performed their experiments using [Googlenet](https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf) and [VGG-16](https://arxiv.org/pdf/1409.1556v6.pdf), and they tried Inception 3a, Inception 4a and Inception 4e on GoogleNet and conv4_2, conv5_1 and conv5_2 on VGG-16. The above mentioned layers has almost similar performance on the dataset they have used. The performance metric used by the authors is Mean Average Precision(MAP).

Your comment:

ShortScience.org allows researchers to publish paper summaries that are voted on and ranked!