Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Paper summary TLDR; The authors propose a novel encoder-decoder neural network architecture. The encoder RNN encodes a sequence into a fixed length vector representation and the decoder generates a new variable-length sequence based on this representation. The authors also introduce a new cell type (now called GRU) to be used with this network architecture. The model is evaluated on a statistical machine translation task where it is fed as an additional feature to a log-linear model. It leads to improved BLEU scores. The authors also find that the model learns syntactically and semantically meaningful representations of both words and phrases. #### Key Points: - New encoder-decoder architecture, seq2seq. Decoder conditioned on thought vector. - Architecture can be used for both scoring or generation - New hidden unit type, now called GRU. Simplified LSTM. - Could replace whole pipeline with this architecture, but this paper doesn't - 15k vocabulary (93% of dataset cover). 100d embeddings, 500 maxout units in final affine layer, batch size of 64, adagrad, 384M words, 3 days training time. - Architecture is trained without frequency information so we expect it to capture linguistic information rather than statistical information. - Visualizations of both words embeddings and thought vectors. #### Questions/Notes - Why not just use LSTM units?
aclweb.org
sci-hub.cc
scholar.google.com
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Cho, Kyunghyun and van Merrienboer, Bart and Gülçehre, Çaglar and Bahdanau, Dzmitry and Bougares, Fethi and Schwenk, Holger and Bengio, Yoshua
ACL EMNLP - 2014 via Bibsonomy
Keywords: dblp


Loading...
Your comment:


Short Science allows researchers to publish paper summaries that are voted on and ranked!
About