3D Human Pose Estimation in Video With Temporal Convolutions and Semi-Supervised Training 3D Human Pose Estimation in Video With Temporal Convolutions and Semi-Supervised Training
Paper summary This paper proposes a 3D human pose estimation in video method based on the dilated temporal convolutions applied on 2D keypoints (input to the network). 2D keypoints can be obtained using any person keypoint detector, but Mask R-CNN with ResNet-101 backbone, pre-trained on COCO and fine-tuned on 2D projections from Human3.6M, is used in the paper. https://i.imgur.com/CdQONiN.png The poses are presented as 2D keypoint coordinates in contrast to using heatmaps (i.e. Gaussian operation applied at the keypoint 2D location). Thus, 1D convolutions over the time series are applied, instead of 2D convolutions over heatmaps. The model is a fully convolutional architecture with residual connections that takes a sequence of 2D poses ( concatenated $(x,y)$ coordinates of the joints in each frame) as input and transforms them through temporal convolutions. https://i.imgur.com/tCZvt6M.png The `Slice` layer in the residual connection performs padding (or slicing) the sequence with replicas of boundary frames (to both left and right) to match the dimensions with the main block as zero-padding is not used in the convolution operations. 3D pose estimation is a difficult task particularly due to the limited data available online. Therefore, the authors propose semi-supervised approach of training the 2D->3D pose estimation by exploiting unlabeled video. Specifically, 2D keypoints are detected in the unlabeled video with any keypoint detector, then 3D keypoints are predicted from them and these 3D points are reprojected back to 2D (camera intrinsic parameters are required). This is idea similar to cycle consistency in the [CycleGAN](https://junyanz.github.io/CycleGAN/), for instance. https://i.imgur.com/CBHxFOd.png In the semi-supervised part (bottom part of the image above) training penalizes when the reprojected 2D keypoints are far from the original input. Weighted mean per-joint position error (WMPJPE) loss, weighted by the inverse of the depth to the object (since far objects should contribute less to the training than close ones) is used as the optimization goal. The two networks (`supervised` above, `semi-supervised` below) have the same architecture but do not share any weights. They are jointly optimized where `semi-supervised` part serves as a regularizer. They communicate through the path aiming to make sure that the mean bone length of the above and below branches match. The interesting tendency is observed from the MPJPE analysis with different amounts of supervised and unsupervised data available. Basically, the `semi-supervised` approach becomes more effective when less labeled data is available. https://i.imgur.com/bHpVcSi.png Additionally, the error is reduced when the ground truth keypoints are used. This means that a robust and accurate 2D keypoint detector is essential for the accurate 3D pose estimation in this setting. https://i.imgur.com/rhhTDfo.png

Summary by Oleksandr Bailo 1 year ago
Your comment:

ShortScience.org allows researchers to publish paper summaries that are voted on and ranked!

Sponsored by: and