Model Transfer for Tagging Low-resource Languages using a Bilingual DictionaryModel Transfer for Tagging Low-resource Languages using a Bilingual DictionaryFang, Meng and Cohn, Trevor2017
Paper summarytmillsThey get multilingual alignments from dictionaries, then train a Bilstm pos tagger in source language, then automatically tag many tokens in the target language, then manually annotate 1000 tokens in target language, then train a system with combined loss over distant tagging and gold tagging. They add an additional output layer that is learned for the gold annotations.
They get multilingual alignments from dictionaries, then train a Bilstm pos tagger in source language, then automatically tag many tokens in the target language, then manually annotate 1000 tokens in target language, then train a system with combined loss over distant tagging and gold tagging. They add an additional output layer that is learned for the gold annotations.