ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
Paper summary *Note: This is a review of both Self Governing Neural Networks and ProjectionNet.* # [Self Governing Neural Networks (SGNN): the Projection Layer](https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer) > A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll use T=80 random hashing projection functions, each of dimensionnality d=14, for a total of 1120 features per projected word in the projection function P. Next, we'll need feedforward neural network (dense) layers on top of that (as in the paper) to re-encode the projection into something better. This is not done in the current notebook and is left to you to implement in your own neural network to train the dense layers jointly with a learning objective. The SGNN projection created hereby is therefore only a preprocessing on the text to project words into the hashing space, which becomes spase 1120-dimensional word features created dynamically hereby. Only the CountVectorizer needs to be fitted, as it is a char n-gram term frequency prior to the hasher. This one could be computed dynamically too without any fit, as it would be possible to use the [power set](https://en.wikipedia.org/wiki/Power_set) of the possible n-grams as sparse indices computed on the fly as (indices, count_value) tuples, too. ```python import sklearn from sklearn.feature_extraction.text import CountVectorizer from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.random_projection import SparseRandomProjection from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics.pairwise import cosine_similarity from collections import Counter from pprint import pprint ``` ## Preparing dummy data for demonstration: ```python class SentenceTokenizer(BaseEstimator, TransformerMixin): # char lengths: MINIMUM_SENTENCE_LENGTH = 10 MAXIMUM_SENTENCE_LENGTH = 200 def fit(self, X, y=None): return self def transform(self, X): return self._split(X) def _split(self, string_): splitted_string = [] sep = chr(29) # special separator character to split sentences or phrases. string_ = string_.strip().replace(".", "." + sep).replace("?", "?" + sep).replace("!", "!" + sep).replace(";", ";" + sep).replace("\n", "\n" + sep) for phrase in string_.split(sep): phrase = phrase.strip() while len(phrase) > SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH: # clip too long sentences. sub_phrase = phrase[:SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH].lstrip() splitted_string.append(sub_phrase) phrase = phrase[SentenceTokenizer.MAXIMUM_SENTENCE_LENGTH:].rstrip() if len(phrase) >= SentenceTokenizer.MINIMUM_SENTENCE_LENGTH: splitted_string.append(phrase) return splitted_string with open("./data/How-to-Grow-Neat-Software-Architecture-out-of-Jupyter-Notebooks.md") as f: raw_data = f.read() test_str_tokenized = SentenceTokenizer().fit_transform(raw_data) # Print text example: print(len(test_str_tokenized)) pprint(test_str_tokenized[3:9]) ``` 168 ["Have you ever been in the situation where you've got Jupyter notebooks " '(iPython notebooks) so huge that you were feeling stuck in your code?', 'Or even worse: have you ever found yourself duplicating your notebook to do ' 'changes, and then ending up with lots of badly named notebooks?', "Well, we've all been here if using notebooks long enough.", 'So how should we code with notebooks?', "First, let's see why we need to be careful with notebooks.", "Then, let's see how to do TDD inside notebook cells and how to grow a neat " 'software architecture out of your notebooks.'] ## Creating a SGNN preprocessing pipeline's classes ```python class WordTokenizer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): begin_of_word = "<" end_of_word = ">" out = [ [ begin_of_word + word + end_of_word for word in sentence.replace("//", " /").replace("/", " /").replace("-", " -").replace(" ", " ").split(" ") if not len(word) == 0 ] for sentence in X ] return out ``` ```python char_ngram_range = (1, 4) char_term_frequency_params = { 'char_term_frequency__analyzer': 'char', 'char_term_frequency__lowercase': False, 'char_term_frequency__ngram_range': char_ngram_range, 'char_term_frequency__strip_accents': None, 'char_term_frequency__min_df': 2, 'char_term_frequency__max_df': 0.99, 'char_term_frequency__max_features': int(1e7), } class CountVectorizer3D(CountVectorizer): def fit(self, X, y=None): X_flattened_2D = sum(X.copy(), []) super(CountVectorizer3D, self).fit_transform(X_flattened_2D, y) # can't simply call "fit" return self def transform(self, X): return [ super(CountVectorizer3D, self).transform(x_2D) for x_2D in X ] def fit_transform(self, X, y=None): return self.fit(X, y).transform(X) ``` ```python import scipy.sparse as sp T = 80 d = 14 hashing_feature_union_params = { # T=80 projections for each of dimension d=14: 80 * 14 = 1120-dimensionnal word projections. **{'union__sparse_random_projection_hasher_{}__n_components'.format(t): d for t in range(T) }, **{'union__sparse_random_projection_hasher_{}__dense_output'.format(t): False # only AFTER hashing. for t in range(T) } } class FeatureUnion3D(FeatureUnion): def fit(self, X, y=None): X_flattened_2D = sp.vstack(X, format='csr') super(FeatureUnion3D, self).fit(X_flattened_2D, y) return self def transform(self, X): return [ super(FeatureUnion3D, self).transform(x_2D) for x_2D in X ] def fit_transform(self, X, y=None): return self.fit(X, y).transform(X) ``` ## Fitting the pipeline Note: at fit time, the only thing done is to discard some unused char n-grams and to instanciate the random hash, the whole thing could be independent of the data, but here because of discarding the n-grams, we need to "fit" the data. Therefore, fitting could be avoided all along, but we fit here for simplicity of implementation using scikit-learn. ```python params = dict() params.update(char_term_frequency_params) params.update(hashing_feature_union_params) pipeline = Pipeline([ ("word_tokenizer", WordTokenizer()), ("char_term_frequency", CountVectorizer3D()), ('union', FeatureUnion3D([ ('sparse_random_projection_hasher_{}'.format(t), SparseRandomProjection()) for t in range(T) ])) ]) pipeline.set_params(**params) result = pipeline.fit_transform(test_str_tokenized) print(len(result), len(test_str_tokenized)) print(result[0].shape) ``` 168 168 (12, 1120) ## Let's see the output and its form. ```python print(result[0].toarray().shape) print(result[0].toarray()[0].tolist()) print("") # The whole thing is quite discrete: print(set(result[0].toarray()[0].tolist())) # We see that we could optimize by using integers here instead of floats by counting the occurence of every entry. print(Counter(result[0].toarray()[0].tolist())) ``` (12, 1120) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.005715251142432, 0.0, 2.005715251142432, 0.0, 0.0, 2.005715251142432, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] {0.0, 2.005715251142432, -2.005715251142432} Counter({0.0: 1069, -2.005715251142432: 27, 2.005715251142432: 24}) ## Checking that the cosine similarity before and after word projection is kept Note that this is a yet low-quality test, as the neural network layers above the projection are absent, so the similary is not yet semantic, it only looks at characters. ```python word_pairs_to_check_against_each_other = [ # Similar: ["start", "started"], ["prioritize", "priority"], ["twitter", "tweet"], ["Great", "great"], # Dissimilar: ["boat", "cow"], ["orange", "chewbacca"], ["twitter", "coffee"], ["ab", "ae"], ] before = pipeline.named_steps["char_term_frequency"].transform(word_pairs_to_check_against_each_other) after = pipeline.named_steps["union"].transform(before) for i, word_pair in enumerate(word_pairs_to_check_against_each_other): cos_sim_before = cosine_similarity(before[i][0], before[i][1])[0,0] cos_sim_after = cosine_similarity( after[i][0], after[i][1])[0,0] print("Word pair tested:", word_pair) print("\t - similarity before:", cos_sim_before, "\t Are words similar?", "yes" if cos_sim_before > 0.5 else "no") print("\t - similarity after :", cos_sim_after , "\t Are words similar?", "yes" if cos_sim_after > 0.5 else "no") print("") ``` Word pair tested: ['start', 'started'] - similarity before: 0.8728715609439697 Are words similar? yes - similarity after : 0.8542062410985866 Are words similar? yes Word pair tested: ['prioritize', 'priority'] - similarity before: 0.8458888522202895 Are words similar? yes - similarity after : 0.8495862181305898 Are words similar? yes Word pair tested: ['twitter', 'tweet'] - similarity before: 0.5439282932204212 Are words similar? yes - similarity after : 0.4826046482460216 Are words similar? no Word pair tested: ['Great', 'great'] - similarity before: 0.8006407690254358 Are words similar? yes - similarity after : 0.8175049752615363 Are words similar? yes Word pair tested: ['boat', 'cow'] - similarity before: 0.1690308509457033 Are words similar? no - similarity after : 0.10236537810666581 Are words similar? no Word pair tested: ['orange', 'chewbacca'] - similarity before: 0.14907119849998599 Are words similar? no - similarity after : 0.2019908169580899 Are words similar? no Word pair tested: ['twitter', 'coffee'] - similarity before: 0.09513029883089882 Are words similar? no - similarity after : 0.1016460166230715 Are words similar? no Word pair tested: ['ab', 'ae'] - similarity before: 0.408248290463863 Are words similar? no - similarity after : 0.42850530886130067 Are words similar? no ## Next up So we have created the sentence preprocessing pipeline and the sparse projection (random hashing) function. We now need a few feedforward layers on top of that. Also, a few things could be optimized, such as using the power set of the possible n-gram values with a predefined character set instead of fitting it, and the Hashing's fit function could be avoided as well by passing the random seed earlier, because the Hasher doesn't even look at the data and it only needs to be created at some point. This would yield a truly embedding-free approach. Free to you to implement this. I wanted to have something that worked first, leaving optimization for later. ## License BSD 3-Clause License Copyright (c) 2018, Guillaume Chevalier All rights reserved. ## Extra links ### Connect with me - [LinkedIn](https://ca.linkedin.com/in/chevalierg) - [Twitter](https://twitter.com/guillaume_che) - [GitHub](https://github.com/guillaume-chevalier/) - [Quora](https://www.quora.com/profile/Guillaume-Chevalier-2) - [YouTube](https://www.youtube.com/c/GuillaumeChevalier) - [Dev/Consulting](http://www.neuraxio.com/en/) ### Liked this piece of code? Did it help you? Leave a [star](https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer/stargazers), [fork](https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer/network/members) and share the love! # ProjectionNets **Notes are from [Issue 1](https://github.com/guillaume-chevalier/SGNN-Self-Governing-Neural-Networks-Projection-Layer/issues/1)**: Very interesting. I've finally read the [previous supporting paper](https://arxiv.org/pdf/1708.00630.pdf), thanks for the shootout. Here are my thoughts after reading it. To sum up, I think that the projections are at word-level instead of at sentence level. This is for two reasons: 1. they use a hidden layer size of only 256 to represent words neurally (whereas sentence representations would be quite bigger), and 2. they seem to use an LSTM on top of the ProjectionNet (SGNN) to model short sentences in their benchmarks, which would mean the ProjectionNet doesn't encode at sentence-level but at least at a lower level (probably words). Here is my full review: On 80\*14 v.s. 1\*1120 projections: - I thought the set of 80 projection functions was not for time performance, but rather to make the union of potentially different features. I think that either way, if one projection function of 1120 entries would take as much time to compute as 80 functions of 14 entries (80\*14=1120) - please correct me if I'm wrong. On the hidden layer size of 256: - I find peculiar that the size of their FullyConnected layers is only of 256. I'd expect 300 for word-level neural representations and rather 2000 for sentence-level neural representations. This leads me to think that the projection layer is at the word-level with char features and not at the sentence-level with char features. On the benchmark against a nested RNN (see section "4.3 Semantic Intent Classification") in the previous supporting paper: - They say "We use an RNN sequence model with multilayer LSTM architecture (2 layers, 100 dimensions) as the baseline and trainer network. The LSTM model and its ProjectionNet variant are also compared against other baseline systems [...]". The fact they phrase their experiment as "The LSTM model and its ProjectionNet" leads me to think that they pre-tokenized texts on words and that the projection layer is applied at word-level from skip-gram char features. This would seem to go in the same direction of the fact they use a hidden layer (FullyConnected) size of only 256 rather than something over or equal to like 1000. On [teacher-student model training](https://www.quora.com/What-is-a-teacher-student-model-in-a-Convolutional-neural-network/answer/Guillaume-Chevalier-2): - They seem to use a regular NN like a crutch to assist the projection layer's top-level layer to reshape information correctly. They even train the teacher at the same time that they train the student SGNN, which is something I hadn't yet seen compared to regular teacher-student setups. I'd find simpler to use a Matching Networks directly which would be quite simpler than setting up student-teacher learning. I'm not sure how their "graph structured loss functions" works - I yet still assume that they'd need train the whole thing like in word2vec with skip-gram or CBOW (but here with the new type of skip-gram training procedure instead of the char feature-extraction skip-gram). I wonder why they did things in a so complicated way. Matching Networks (a.k.a. cosine similarity loss, a.k.a. self-attention queries dotted with either attention keys or values before a softmax) directly with negative sampling seems so much simpler.
arxiv.org
scholar.google.com
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
Ravi, Sujith
arXiv e-Print archive - 2017 via Local Bibsonomy
Keywords: dblp


[link]
Summary by Guillaume Chevalier 10 months ago
Loading...
Your comment:


ShortScience.org allows researchers to publish paper summaries that are voted on and ranked!
About

Sponsored by: and