Neural Message Passing for Quantum Chemistry Neural Message Passing for Quantum Chemistry
Paper summary In the years before this paper came out in 2017, a number of different graph convolution architectures - which use weight-sharing and order-invariant operations to create representations at nodes in a graph that are contextualized by information in the rest of the graph - had been suggested for learning representations of molecules. The authors of this paper out of Google sought to pull all of these proposed models into a single conceptual framework, for the sake of better comparing and testing the design choices that went into them. All empirical tests were done using the QM9 dataset, where 134,000 molecules have predicted chemical properties attached to them, things like the amount of energy released if bombs are sundered and the energy of electrons at different electron shells. An interesting note is that these properties weren't measured empirically, but were simulated by a very expensive quantum simulation, because the former wouldn't be feasible for this large of a dataset. However, this is still a moderately interesting test because, even if we already have the capability to computationally predict these features, a neural network would do much more quickly. And, also, one might aspirationally hope that architectures which learn good representations of molecules for quantum predictions are also useful for tasks with a less available automated prediction mechanism. The framework assumes the existence of "hidden" feature vectors h at each node (atom) in the graph, as well as features that characterize the edges between nodes (whether that characterization comes through sorting into discrete bond categories or through a continuous representation). The features associated with each atom at the lowest input level of the molecule-summarizing networks trained here include: the element ID, the atomic number, whether it accepts electrons or donates them, whether it's in an aromatic system, and which shells its electrons are in. Given these building blocks, the taxonomy lays out three broad categories of function, each of which different architectures implement in slightly different ways. 1. The Message function, M(). This function is defined with reference to a node w, that the message is coming from, and a node v, that it's being sent to, and is meant to summarize the information coming from w to inform the node representation that will be calculated at v. It takes into account the feature vectors of one or both nodes at the next level down, and sometimes also incorporates feature vectors attached to the edge connecting the two nodes. In a notable example of weight sharing, you'd use the same Message function for every combination of v and w, because you need to be able to process an arbitrary number of pairs, with each v having a different number of neighbors. The simplest example you might imagine here is a simple concatenation of incoming node and edge features; a more typical example from the architectures reviewed is a concatenation followed by a neural network layer. The aggregate message being sent to the receiver node is calculated by summing together the messages from each incoming vector (though it seems like other options are possible; I'm a bit confused why the paper presented summing as the only order-invariant option). 2. The Update function, U(). This function governs how to take the aggregated message vector sent to a particular node, and combine that with the prior-layer representation at that node, to come up with a next-layer representation at that node. Similarly, the same Update function weights are shared across all atoms. 3. The Readout function, R(), which takes the final-layer representation of each atom node and aggregates the representations into a final graph-level representation an order-invariant way Rather than following in the footsteps of the paper by describing each proposed model type and how it can be described in this framework, I'll instead try to highlight some of the more interesting ways in which design choices differed across previously proposed architectures. - Does the message function being sent from w to v depend on the feature value at both w and v, or just v? To put the question more colloquially, you might imagine w wanting to contextually send different information based on different values of the feature vector at node v, and this extra degree of expressivity (not present in the earliest 2015 paper), seems like a quite valuable addition (in that all subsequent papers include it) - Are the edge features static, categorical things, or are they feature vectors that get iteratively updated in the same way that the node vectors do? For most of the architectures reviewed, the former is true, but the authors found that the highest performance in their tests came from networks with continuous edge vectors, rather than just having different weights for different category types of edge - Is the Readout function something as simple as a summation of all top-level feature vectors, or is it more complex? Again, the authors found that they got the best performance by using a more complex approach, a Set2Set aggregator, which uses item-to-item attention within the set of final-layer atom representations to construct an aggregated grap-level embedding The empirical tests within the paper highlight a few more interestingly relevant design choices that are less directly captured by the framework. The first is the fact that it's quite beneficial to explicitly include Hydrogen atoms as part of the graph, rather than just "attaching" them to their nearest-by atoms as a count that goes on that atom's feature vector. The second is that it's valuable to start out your edge features with a continuous representation of the spatial distance between atoms, along with an embedding of the bond type. This is particularly worth considering because getting spatial distance data for a molecule requires solving the free-energy problem to determine its spatial conformation, a costly process. We might ideally prefer a network that can work on bond information alone. The authors do find a non-spatial-information network that can perform reasonably well - reaching full accuracy on 5 of 13 targets, compared to 11 with spatial information. However, the difference is notable, which, at least from my perspective, begs the question of whether it'd ever be possible to learn representations that can match the performance of spatially-informed ones without explicitly providing that information.

Summary by CodyWild 1 year ago
Your comment: allows researchers to publish paper summaries that are voted on and ranked!

Sponsored by: and